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ABSTRACT
In this paper, we propose a model-free reinforcement learning

method to synthesize control policies for mobile robots modeled

as Markov Decision Process (MDP) with unknown transition prob-

abilities that satisfy Linear Temporal Logic (LTL) specifications.

Specifically, we develop a reduced variance deep Q-Learning tech-

nique that relies on Neural Networks (NN) to approximate the

state-action values of the MDP and employs a reward function

that depends on the accepting condition of the Deterministic Ra-

bin Automaton (DRA) that captures the LTL specification. The key

idea is to convert the deep Q-Learning problem into a nonconvex

max-min optimization problem with a finite-sum structure, and

develop an Arrow-Hurwicz-Uzawa type stochastic reduced vari-

ance algorithm with constant stepsize to solve it. Unlike Stochastic

Gradient Descent (SGD) methods that are often used in deep rein-

forcement learning, our method can estimate the gradients of an

unknown loss function more accurately, improving the stability

of the training process. Moreover, our method does not require

learning the transition probabilities in the MDP, constructing a

product MDP, or computing Accepting Maximal End Components

(AMECs). This allows the robot to learn an optimal policy even if

the environment cannot be modeled accurately or if AMECs do

not exist. In the latter case, the resulting control policies minimize

the frequency with which the system enters bad states in the DRA

that violate the task specifications. To the best of our knowledge,

this is the first model-free deep reinforcement learning algorithm

that can synthesize policies that maximize the probability of satis-

fying an LTL specification even if AMECs do not exist. Rigorous

convergence analysis and rate of convergence are provided for the

proposed algorithm as well as numerical experiments that validate

our method.
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1 INTRODUCTION
Traditionally, the robot motion planning problem consists of gen-

erating robot trajectories that reach a desired goal region starting

from an initial configuration while avoiding obstacles [21]. More re-

cently, a new class of planning approaches have been developed that

can handle a richer class of tasks than the classical point-to-point

navigation, and can capture temporal and boolean specifications.

Such approaches typically rely on formal languages, such as Linear

Temporal logic (LTL), to represent complex tasks and on discrete

models, such as transition systems [14, 20] or Markov Decision

Processes (MDPs) [10, 15, 36], to capture the robot dynamics and

the uncertainty in the workspace.

Control of MDPs under LTL specifications has been extensively

studied recently [10, 15, 36]. Often, the common assumption is that

the transition probabilities in the MDPs are known. In this case,

tools from probabilistic model checking [2] can be used to design

policies that maximize the probability of satisfying the assigned

LTL task. For example, in [10, 15, 36], first a product MDP is con-

structed by combining the MDP that captures robot mobility and

the Deterministic Rabin Automaton (DRA) that represents the LTL

specification and then, by computing the Accepting Maximum End

Components (AMECs) of the product MDP, control policies that

https://doi.org/10.1145/3302509.3311053
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maximize the probability of satisfying the LTL formula are synthe-

sized. However, construction of the product MDP and computation

of AMECs is computationally expensive.

In this paper, we consider robots modeled as MDPs with un-

known transition probabilities that are responsible for accomplish-

ing complex tasks captured by LTL formulas. Our goal is to design

policies that maximize the probability of satisfying the LTL speci-

fication without the construction of a product MDP and AMECs.

This signficantly decreases the computational cost and also ren-

ders the proposed method applicable to planning problems where

AMECs do not exist. To achieve that, we first assign rewards to the

transitions of the product MDP so that high rewards correspond

to transitions that lead to accepting states that need to be visited

infinitely often, as in [30]. Transitions in the product MDP are es-

sentially determined by transitions in the MDP given the current

action and the next MDP state. Since the DRA is a deterministic

automaton, given the current DRA states and the next MDP states,

DRA transitions can be uniquely determined and combined with

MDP transitions to form the transitions in the product MDP. This

allows us to design a policy for the product MDP that maximizes

the collection of the rewards. By construction of the rewards and

by the accepting condition of the DRA, maximizing the collection

of the rewards implies that the probability of satisfying the LTL

formula is maximized.

Since the state-space of the proposed control problem under

LTL specifications is typically very large, tabular Reinforcement

Learning (RL) methods become intractable since they need to per-

form value estimation for every single state separately [8, 35]. To

overcome this difficulty, we employ function approximation, which

assigns a parametrized mapping to the value function and the goal

is to learn the mapping parameters such that an approximation er-

ror is minimized. Specifically, we employ deep Q-networks [27, 37].

Compared to linear approximation methods that have been ex-

tensively studied in RL, deep Q-networks avoid the need for an a
priori selection of appropriate basis functions that are needed to

accurately approximate the value function. Then, we convert the

deep Q-learning problem into a non-convex min-max optimization

problem with finite-sum structure, and develop an Arrow-Hurwicz-

Uzawa [19] type stochastic reduced variance algorithm with con-

stant step size to solve it. Unlike Stochastic Gradient Descent (SGD)

methods that are often used in deep RL and are known to suffer

from instabilities that affect convergence and the quality of the

resulting policies [8], our method can estimate the gradients of an

unknown loss function more accurately, improving the stability of

the training process. Despite the popularity of deep RL methods

due to their appealing numerical performance, the theoretical un-

derstanding of these methods is still quite limited. In this paper,

we analytically prove that the proposed algorithm converges to

the first-order stationary solution of this problem with a sub-linear

rate.

To the best of our knowledge, the most relevant works on learn-

ing for control under LTL specifications are [10, 12, 25, 26, 30, 38].

Specifically, [30] converts the LTL specification into a DRA and

takes the product between the MDP and the DRA to form a Product

MDP. Then it employs a model-based learning method to learn the

transition probabilities and optimize the current policy using Tem-

poral Difference (TD) learning [34]. However, since this method

stores all transition probabilities and state values, it can typically

be used to solve problems with small and low dimensional state

spaces. Furthermore, in this model-based approach, if the model of

the environment and robot dynamics are not learned accurately,

then the learned policy is not optimal. In our work, the state-action

values of each state in the product MDP are approximated by Neu-

ral Networks which require much fewer resources to store and

are also more expressive. To avoid the dependence of model-based

methods on learning an accurate enough model of the environment,

model-free learning algorithms can be used instead. Specifically,

[12, 38] find AMECs in the learned product MDP to determine the

accepting states and then learn the policy through value iteration

[12] or actor-critic type learning [38]. Nevertheless, the quadratic

complexity of finding AMECs prohibits these algorithms from han-

dling MDPs with large state spaces and complex LTL specifications,

i.e., DRAs with large numbers of states. This is not the case with our

method that does not construct a product MDP nor does it require

the computation of AMECs. Moreover, note that [12, 38] return no

policies if there do not exist AMECs in the product MDP. To the

contrary, in such cases, our proposed control synthesis algorithm

can compute a policy that maximizes the probability of satisfying

the acceptance condition of the DRA. In practice, this means that

the policy returned by our method minimizes the frequency with

which the system enters bad states in the DRA that violate the

task specifications. This is relevant to applications where the LTL

specifications can be thought of as soft constraints whose violation

is not destructive for the system, as in our recent work [15]. In

[10, 25, 26], control of MDPs with unknown transition probabilities

under Signal Temporal Logic (STL) and Truncated Linear Temporal

Logic (TLTL) specifications is considered. However, STL and TLTL

specifications are satisfied by finite paths. To the contrary, here we

consider LTL tasks that are satisfied by infinite paths.

On the other hand, the most relevant works on RL using function

approximation are presented in [7, 11]. In [11] the authors general-

ize the popular reduced variance algorithms named SAGA [9] and

SVRG [18] to solve the policy evaluation problem using linear func-

tion approximation. They show that the proposed reduced variance

algorithms converge significantly faster than stochastic gradient

based algorithms such as the GTD2 [33] algorithm. However, this

analysis is based on linear function approximation, which makes

the problem convex, and cannot be easily extended to the case of

nonlinear function approximation. In [7] the authors generalize

the GTD2 algorithm for nonlinear smooth function approximation.

However, the algorithm in [7] is incremental and thus sample-

inefficient in practice. Furthermore, our algorithm uses constant

step-size instead of the non-increasing step-size proposed in [7]. To

the best of our knowledge, our proposed algorithm is the first RL

algorithm utilizing nonlinear function approximation of the value

function with provable convergence rate.

This paper is organized as follows: In Section 2, we review nec-

essary background on LTL, labeled MDPs, deep Q-Learning, and

we formulate the proposed learning problem. In Section 3, we de-

velop the proposed Arrow-Hurwicz-Uzawa type reduced variance

algorithm to solve the LTL planning problem under consideration.

Simulation studies are provided in Section 4.
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2 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we briefly review preliminaries on LTL, MDPs, deep

Q-Learning, and we formally define the proposed LTL planning

problem.

2.1 LTL Specifications
The basic ingredients of Linear Temporal Logic are a set of atomic

propositions AP, the boolean operators, i.e., conjunction ∧, and

negation ¬, and two temporal operators, next ⃝ and untilU . LTL

formulas over a set AP can be constructed based on the following

grammar: ϕ ::= true | ξ | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1 U ϕ2, where
ξ ∈ AP. For the sake of brevity we abstain from presenting the

derivations of other Boolean and temporal operators, e.g., always
□, eventually ♢, implication⇒, which can be found in [2]. Any LTL

formula can be translated into a Deterministic Rabin Automaton

(DRA) defined as follows [2].

Definition 2.1 (DRA). ADRA over 2AP is a tupleRϕ = (Q,q0, Σ,

δ ,F ) where Q is a finite set of states; q0 ⊆ Q is the set of initial states;
Σ = 2

AP is the input alphabet; δ : Q × Σ → Q is the transition
function and F = {(G1,B1), . . . , (Gn ,Bn )} is a set of accepting pairs
where Gi ,Bi ⊆ Q, i ∈ {1, . . . ,n}.

A run of Rϕ over a infinite word ωΣ = ωΣ (1)ωΣ (2)ωΣ (3) · · · ∈
Σω is a infinite sequence ωQ = ωQ (1)ωQ (2)ωQ (3) · · · , where
ωQ (1) ∈ q0 and ωQ (k + 1) ∈ δ (ωQ (k ),ωΣ (k )) for all k ≥ 1. Let

Inf(ωQ ) denote the set of states that appear infinitely often in ωQ .
Then, a run ωQ is accepted by Rϕ if Inf(ωQ ) ∩ Gi , ∅ and Inf(ωQ )
∩ Bi = ∅ for at least one pair i ∈ {1, . . . ,n} of accepting states

i = 1, . . . ,n [3].

2.2 MDP Robot Model
Robot mobility in the workspace can be represented by a product

Markov Decision Process (MDP) defined as follows.

Definition 2.2 (MDP). A Markov Decision Process (MDP) is a
tupleM = (S, s0,A, P ,R,γ ), where S is a finite set of states; s0 is the
initial state; A is a finite set of actions; P is the transition probability
function defined as P : S ×A × S → [0, 1]; R : S ×A × S → R is the
reward function; γ ∈ [0, 1] is the discount factor.

In order to model uncertainty in both the robot motion and the

workspace properties, we extend Definition 2.2 to include proba-

bilistic labels giving rise to a labeled MDP defined as follows [30].

Definition 2.3 (Labeled MDP). A labeled MDP is a tupleM =
(S, s0,A,P,R,γ ,AP,L), where S is a finite set of states; s0 is the
initial state;A is a finite set of actions; P is the transition probability
function defined as P : S × A × S → [0, 1]; R : S × A × S → R is
the reward function; γ ∈ [0, 1] is the discount factor; AP is the set
of atomic propositions; L : S → 2

AP is the labeling function that
returns the atomic propositions that are satisfied at a state s ∈ S.

Definition 2.4 (Policy of MDP). A deterministic policy π of
a labeled MDPM is a function, π : S → A, that maps each state
s ∈ S to an action a ∈ A.

Observe that given an initial state s0 and a policy π , an infinite
path uπ of the MDP is generated under the policy π , defined as an

infinite sequence uπ = s
0, s1, . . . , st , . . . , where st ∈ S is the state

of the MDP at the stage t . Note that, given an action at due to the

policy π , a transition from st ∈ S to st+1 ∈ S in the labeled MDP

occurs with probability P (st ,at , st+1), and a scalar reward r t is
generated.

Moreover, given a policy π we can define the accumulated reward

over a finite horizon starting from stage t as follows.

Definition 2.5 (Accumulated Return). Given a labeled MDP
M = (S, s0,A,P,R,γ ,AP,L) and a policy π , the accumulated
return over an finite horizon starting from the stage t and ending at

stage t +T , T > 0, is defined as Gt =
T∑
k=t

γkrt+k , where rt+k is the

return at the stage t + k .

2.3 Deep Q-Learning
Consider the labeled MDP defined in Definition 2.3 with unknown

transition probabilities P. Our goal in this section is to compute

a policy π∗ that maximizes the expected accumulated return from

the initial stage, i.e.,

π∗ = argmaxπ Es t≥1∼S,r t≥1∼R,at≥1∼π [G1], (1)

where st ≥1 ∼ S means that the states s1, s2, . . . , sT are selected

from the finite state set S, r t ≥1 ∼ R means that the rewards are

determined by the reward function R of the MDPM, and at ≥1 ∼ π
means that the actions are determined by the policy π .

To solve the optimization problem (1) we can use Q-Learning,

which relies on the state-action value function defined bellow.

Definition 2.6 (State-Action Value Function). Given an
MDPM = (S, s0,A,P,R,γ ,AP,L) and policy π , the state-action
value function Qπ (s,a) is defined as the expected return for taking
action a when at state s following policy π , i.e.,Qπ (s,a) = E[Gt |s

t =

s,at = a].

Definition 2.7 (Optimal State-Action Value Function). The
optimal state-action value function Q∗ (s,a) = max

π
Qπ (s,a) is the

maximum state-action value for state s and action a for some policy
π .

Q-Learning learns a greedy deterministic policy π (s ) = argmaxa
Qπ (s,a). In what follows, we present a Deep Q-Learning approach

that relies on Neural Networks (NNs) to represent the state-action

value function that depends on an unknown parameter θ . The
parameter θ and the respective state-action value function, denoted

byQ (s,a;θ ), can be learned iteratively by minimizing the following

loss function:

J (θ ) = Es,s ′∼ρβ ,r∼R,a∼β
[
(Q (s,a;θ ) − y)2

]
, (2)

where y is the training target defined as

y = R
(
s,a, s ′

)
+ γQ

(
s ′,π (s ′);θ

)
. (3)

In (2), β is an exploration policy, such as ϵ-greedy, ρβ is the state

visitation distribution over policy β , and θ are the weights of the

NN. Note that the training target y depends on the current network

weights θ , that change with every iteration causing overestimation

problems [37]. In supervised learning, the training target should be

independent of the training weight. In [27], this issue is addressed
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using a separate network, with weights θ ′, to generate the Q values

needed to form the new target yDoubleQ :

yDoubleQ = R
(
s,a, s ′

)
+ γQ

(
s ′,π (s ′);θ ′

)
. (4)

Note that deep Q-Learning can be implemented in a batch setting

to accelerate the training process and reduce the variance of the

computed gradients [13, 27, 37, 39]. To do so, we define an empirical

data buffer for batch training as follows:

Definition 2.8 (EmpiricalDataBuffer). Let et = (sn ,an , sn+1,
rn ) denote an agent’s experience at time step n. Then, the empirical
data buffer is defined as the set En = {e1, . . . , en } that collects all
prior experiences up to time n.

2.4 Problem Definition
Consider a robot operating in a workspaceW ⊆ Rd , d = 2, 3

that is responsible for accomplishing a high level complex task

captured by an LTL formula ϕ. Robot mobility inW is captured

by a labeled MDP M = (S, s0,A,P,R,γ ,AP,L), as defined in

Definition 2.3. We can compose the labeled MDPM and the DRA

defined in Definition 2.1 to obtain a product MDP.

Definition 2.9. A product MDP between the labeled MDPM =
(S, s0,A,P,R,γ ,AP,L) and the DRA Rϕ = (Q,q0, Σ, δ ,F ) is
a tuple P = (Sp , s

0

p ,Ap ,Pp ,Fp ,Rp ,γp ), where Sp = S × Q is
the set of states; s0p = (s0,q0) is the initial state; Ap is the set
of actions inherited from MDP, so that Ap ((s,q)) = A (s ); Pp is
the set of transition probabilities, so that for sp ∈ Sp ,ap ∈ Ap
and s ′p ∈ Sp , if q

′ = δ (q,L(s )), then Pp (sp ,ap , s ′p ) = P (s,a, s
′);

Fp = {(Gp
1
,Bp

1
), . . . , (Gpn ,Bpn )} is the set of accepting states,

where Gp i = S × Gp i and Bp i = S × Bi ; Rp : Sp × Ap × Sp → R
is the reward function; and γp is the discounting rate inherited from
the labeled MDP.

Our goal is to design a policy that maximizes the probability of

satisfying the assigned LTL specification ϕ. The probability PPπ (ϕ)
that a policy π of the product MDP P satisfies an LTL formula ϕ is

defined as

PPπ (ϕ) = P({uPπ ∈ Pπ | L(Π |Mr Pπ ) |= ϕ}), (5)

where Pπ is a set that collects all infinite paths uPπ of the product

MDP P (see also Definition 2.4) that are induced under the policy

π . Also in (5), Π |MuPπ stands for the projection of the infinite run

uPπ onto the state-space ofM, i.e., Π |MuPπ is an infinite sequence

of states inM, and L(Π |Mr Pπ ) denotes the word that corresponds

to Π |MuPπ . Then the problem that we address in this paper can be

summarized as follows.

Problem 1. Given a labeledMDPM = (S, s0,A,P,R,γ ,AP,L)
with unknown transition probabilities and an LTL specification ϕ,
find a policy π such that the probability PPπ (ϕ), defined in (5), of
satisfying the ϕ is maximized.

3 PROPOSED ALGORITHM
In this section, we first formulate (5) as a model-free reinforcement

learning problem that allows us to maximize the probability of

satisfying an LTL specification ϕ without constructing the product

MDP P and AMECs, see the definition of AMECs in [15]. Then,

we propose an Arrow-Hurwicz-Uzawa type stochastic reduced

variance algorithm to solve this reinforcement learning problem.

3.1 Model-Free RL Problem
In this section we discuss how to transform Problem 1 into a model-

free reinforcement learning problem. Define the reward function

RP : SP × AP × SP → R in Definition 2.9 as follows

RP (sP ,aP , s
′
P
) =




rG if s ′
P
∈ Gpi ,

rB if s ′
P
∈ Bpi ,

rd if q′ is deadlock state,

ro otherwise

(6)

for all i ∈ {1, . . . ,n}. Specifically, we assign high rewards rG to

transitions that lead to states in the sets Gi and assign low rewards

rB to transitions that end in states in the sets Bi . This selection of

rewards can guide the robot to maximize the probability of satisfy-

ing a given LTL formula ϕ with minimum number of movements.

A negative reward with large absolute value, rd , is assigned to

transitions that lead to deadlock states in the DRA. This prevents

violation of the safety constraints in the LTL formula (e.g., □¬ξ ).
A negative reward with small absolute value, ro , is assigned to all

other transitions so that the robot reaches the final states with the

minimum number of movements. This reward should be smaller

than rG because Gi is the set of states that will be visited infinitely

often and should be larger than rB because Bi is the set of states

that are not supposed to be visited infinitely often. Overall, these

four rewards are ranking in the following monotone increasing

order:

rd << rB < ro < rG (7)

Then, to solve Problem 1, we design a policy π∗ for the product
MDP P that maximizes the accumulated rewards determined in (6),

i.e.,

π∗ = argmaxπEs t≥1,r t≥1∼RP,at≥1∼π [G1], (8)

where st ∈ S ∈ P, r t ≥1 ∼ RP means that the reward r t at time

step t is determined by the product MDP reward function RP , and

at ≥1 ∼ π means that the action at taken at time step t is determined

by the policy π .
Although the reward function is typically defined over the prod-

uct MDP, in practice, we can obtain the reward of taking action aP
given sP directly from the transitions in the associated DRA. This

way we can avoid constructing the product MDP and this approach

is more suitable for model-free learning. To obtain the reward RP
of the product MDP P directly from the associated DRA Rϕ , we

introduce the DRA reward function RRϕ : Q × AP × Q → R as

RRϕ (q,a,q
′) =




rG if q′ ∈ Gi ,
rB if q′ ∈ Bi ,
rd if q′ is deadlock state,

ro otherwise,

(9)

for all i ∈ {1, . . . ,n}. Then, replacing the product MDP reward

function RP with the DRA reward function RRϕ in (8), the learning
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Algorithm 1 Policy generation using the proposed reduced vari-

ance deep Q-Learning algorithm

Input: θ ,θ ′,αθ ,αλ , β,τ ,γ ,max_epi,max_step,max_epoch, s0,q0,
M, En = [],Gθ ,Gλ

Begin:
1: for epi = 0 tomax_epi − 1 do
2: s ← s0, q ← q0,m ← (s,q)
3: for step = 0 tomax_step − 1 do
4: Sample a ∼ β
5: Get s ′ following the dynamics inM after performing a
6: q′, r ← CheckRabin(s,q, s ′)
7: m′ ← (s ′,q′)
8: Append tuple (m,a, r ,m′) to En

9: s ← s ′, q ← q′,m ←m′

10: if CheckTerminal(m) then
11: break
12: end if
13: end for
14: end for
15: Initialize Gθ and Gλ
16: for r = 0 tomax_epoch − 1 do
17: Sample data (mir ,air , rir ,m

′
ir ) from E

n

18: if CheckTeminal(m′ir ) then
19: yir ← rir
20: else
21: yir ← rir + γ maxa′ Q (m′ir ,a

′
;θ ′)

22: ▷ Q (·, ·;θ ′) is the output from target network
with input (·, ·)

23: end if
24: δir ← yir −Q (mir ,air ;θ )

25: Set ( ˜θri ,
˜λri ) = (θr , λr ) if i = ir , and ( ˜θri ,

˜λri ) = ( ˜θr−1i , ˜λr−1i )
otherwise.

26: Gθ ←
1

n
∑n
i=1 ∇θ fi (

˜θr−1i , ˜λr−1i ) + 1

npir
[∇θ fir (θ

r , λr ) −

∇θ fir (
˜θr−1ir
, ˜λr−1ir

)]

27: Gλ ←
1

n
∑n
i=1 ∇λ fi (

˜θr−1i , ˜λr−1i ) + 1

npir
[∇λ fir (θ

r , λr ) −

∇λ fir (
˜θr−1ir
, ˜λr−1ir

)]

28: θ ← θ − αθGθ
29: λ ← λ + αλGλ
30: Set θ ′ ← θ after every fixed amount of epochs

31: end for
32: π (·) ← argmaxa′Q (·,a′;θ )
33: return π

objective becomes:

π∗ = argmaxπEs t≥1∼P,r t≥1∼Rϕ,at≥1∼π [G1]. (10)

The only difference between (8) and (10) is that in (10) the reward

r t , is determined by the DRA reward function (9), while in (8), r t

is determined by the product MDP reward function (6).

3.2 Reduced Variance RL Algorithm
Reduced variance optimization algorithms have been widely used

for solving convex finite-sum problems in recent years; see, e.g.,

SAG/SAGA [9, 31], the SDCA [32], the SVRG [18], and the RPDG

Algorithm 2 CheckRabin(s,q, s ′)

Input:
1: Current MDP state s ; Current Rabin state q; Next MDP state s ′;

MDPM; DRA Rϕ ;

Begin:
2: q′ ← δ (q,L(s ′))
3: if q′ is a deadlock state then
4: q′ ← q

5: end if
6: r ← RR (q,q

′) ▷ RR is the reward function in DRA Rϕ
7: return q′, r

[23]. However, for nonconvex problems as the one considered here

the analysis is significantly more difficult. Very recently, a few

works focused on reduced variance algorithms for non-convex

finite-sum optimization problems. For example, in [16] a stochastic

algorithm named NESTT is proposed for finite-sum non-convex

problems over distributed networks. Similar algorithms have been

proposed and analyzed in [29, 40]. Nevertheless, [16, 29, 40] are

not fit to the problem formulation considered here or they are not

numerically efficient. Specifically, [16] is a distributed algorithm,

[29] is not exactly SAGA because it needs to sample twice in each

iteration, and [40] is SVRG which means that it needs the full gradi-

ent in each inner loop. To address these limitations, we reformulate

the deep Q-Learning problem (2) into a finite-sum non-convex

optimization problem and propose a new efficient Arrow-Hurwicz-

Uzawa type reduced variance algorithm to solve it. Compared to

the methods in [16, 29, 40], the proposed algorithm computes the

gradient at one data point at each iteration, similar to SAGA in [9].

Furthermore, we show that the proposed algorithm converges with

sublinear rate for the nonlinear problem considered in this paper.

To develop the proposed algorithm, first define the first order

optimality condition associated with the minimization of the deep

Q-learning loss function in (2) using the training target defined in

(4) as

E
s,s ′∼ρβ ,a∼β,r∼RP

[δθ∇θQ (s,a;θ )] = 0, (11)

where δθ = yDoubleQ − Q (s,a;θ ) is the TD-error of Q-Learning

and θ ∈ Rd is the parameter in the function Q (s,a). Using (11), we
can define the error function

Ĵ (θ ) =
1

2

| |E[δθ∇θQ (s,a;θ )]| |2, (12)

and formulate the optimization problem

min

θ
Ĵ (θ ) [=

1

2

| |E[δθ∇θQ (s,a;θ )]| |2]. (13)

For simplicity, we denote the expectation Es,s ′∼ρβ ,a∼β,r∼RP [δθ
∇θQ (s,a;θ )] by E[δθ∇θQ (s,a;θ )] in (12), (13) and in the following

analysis. Note that Q (·, ·;θ ) is a nonlinear function, due to the use

of NNs to approximate the true Q value, therefore, (13) becomes a

non-convex optimization problem that is more challenging to solve.

To convert (13) to a finite sum form, define a new variablew ∈ Rd

to denote the expectation in (13) and replace this expectation by its

empirical estimate, using the data stored in the empirical buffer En
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defined in Definition 2.8. Then, problem (13) can be rewritten as

min

θ,w
J (θ ,w ) =

1

2

wTw (14)

s.t. w =
1

n

n∑
i=1

δ iθ∇θQ (si ,ai ;θ ),

The Lagrangian corresponding to problem (14) can be defined as

L (θ , λ,w ) =
1

2

wTw + λT *
,

1

n

n∑
i=1

δ iθ∇θQ (si ,ai ;θ ) −w+
-
, (15)

where λ ∈ Rd is the dual variable associated with the constraint. Ap-

plying the Karush-Kuhn-Tucker (KKT) condition ∇wL (θ , λ,w ) = 0,

(15) becomes

L (θ , λ) = −
1

2

λT λ + λT
1

n

n∑
i=1

δ iθ∇θQ (si ,ai ;θ ), (16)

and the corresponding dual problem is

max

λ
min

θ

1

n

n∑
i=1
−
1

2

λT λ + λT δ iθ∇θQ (si ,ai ;θ ). (17)

To simplify notation, we denote fi (θ , λ) = −
1

2
λT λ+λT δ iθ∇θQ (si ,ai ;θ ).

Then, (17) becomes

max

λ
min

θ

1

n

n∑
i=1

fi (θ , λ), (18)

which is in a finite-sum form. We can show that if (θ∗, λ∗) is a
stationary solution of problem (18), then θ∗ is a stationary solution

of the problem (13). This is because, if (θ∗, λ∗) is a stationary solu-

tion of (18), then, λ∗ = 1

n
∑
i δ

i
θ∇Q

∗ (si ,ai ). Further, we have that

∇θ (
1

n
∑
i δ

i
θ∇Q

∗ (si ,ai ))T λ∗ = 0. Combining these two equations

we see that θ∗ is a stationary solution of problem (13).

Building upon the reduced variance methods for finite-sum

problems discussed in Appendix A, we can define here too the

intermediate variables ( ˜θri ,
˜λri ) = (θr , λr ) if i = ir , and ( ˜θri ,

˜λri ) =

( ˜θr−1i , ˜λr−1i ) otherwise. Since we are maximizing over λ and mini-

mizing over θ , the gradient of the objective in (18) becomes

Gr =

[
Gr
θ
−Gr

λ

]
, (19)

where

Gr
θ =

1

n

n∑
i=1
∇θ fi ( ˜θ

r−1
i , ˜λr−1i ) +

1

npir
[∇θ fir (θ

r , λr ) (20)

− ∇θ fir (
˜θr−1ir ,

˜λr−1ir )]

Gr
λ =

1

n

n∑
i=1
∇λ fi ( ˜θ

r−1
i , ˜λr−1i ) +

1

npir
[∇λ fir (θ

r , λr ) (21)

− ∇λ fir (
˜θr−1ir ,

˜λr−1ir )].

Let us associate a new parameter ηi > 0 with the i-th data point

and select the stepsize to be α = 1∑n
i=1 ηi

, where the selection of the

parameter ηi is discussed in the next section. Then, the update of

the variables θ and λ takes the form:

θ ← θ − αθG
r
θ , (22a)

λ ← λ + αλG
r
λ , (22b)

where αθ and αλ are the learning rates for θ and λ, respectively.
The proposed algorithm is summarized in Alg. 1. Specifically,

first the empirical data buffer is generated as follows [lines 1-14,

Algorithm 1]. At the beginning of each episode, the current MDP

state s is set to the initial MDP state s0 and the current rabin state

q is set to the initial rabin state q0. Then,m = (s,q) represents the
current product state in the product MDP [line 2, Algorithm 1]. The

current action a is determined by an exploration policy β [lines 4,

Algorithm 1]. Then, action a is performed and the next MDP state

s ′ is observed [line 5, Algorithm 1]. The next rabin state q′ and the

reward r , given the current Rabin state q, are determined by the

function CheckRabin(s,q, s ′) in Algorithm 2, which is discussed

in detail later in the text [line 6, Algorithm 1]. Then, the next

product statem′ = (s ′,q′) is constructed and the tuple (m,a, r ,m′)
is stored in the empirical data buffer En [lines 7-8, Algorithm 1].

Then s,q,m are set to s ′,q′,m′, respectively [line 9, Algorithm 1]. If

m is a terminal state, the current episode is completed [lines 10-12,

Algorithm 1] and the next episode starts. Note that we terminate

every episode when q ∈ Gi , since the goal of the robot is to learn a

policy so that the states q ∈ Gi are visited infinitely often, as this

satisfies the accepting condition of the DRA. When all episodes are

completed, we finish appending data to the empirical data buffer

En . The reduced variance optimization steps are summarized in

[lines 15-31, Algorithm 1]. In particular, in this part of the algorithm

a a gradient descent and a a gradient ascent step are performed over

the Lagrangian function L(θ , λ) with respect to variables θ and

λ, respectively. Our algorithm is an Arrow-Hurwicz-Uzawa type

algorithm [19].

The function CheckRabin(s,q, s ′) used in [line 6, Algorithm 1]

to obtain the next state q′ and the reward r given an action a is

described in Algorithm 2. This algorithm requires as an input the

current MDP state s , the current rabin state q, the next MDP state

s ′ after taking action a, the labeling function L from the MDP,

and the DRA reward function Rϕ . First, the next rabin state q′

is determined based on the DRA transition rule δ (see Definition

2.1) given the atomic propositions that are true at the next state s ′

[line 2, Algorithm 2]. If q′ is a deadlock state, then this means that

the LTL specification is violated. In this case, following the same

logic as in [30], we reset the Rabin state to the Rabin state q of the

previous step. In [line 10, Algorithm 2], the reward is determined

by the reward function RR embedded in DRA Rϕ .

4 CONVERGENCE ANALYSIS
In this sectionwe provide the convergence analysis for the proposed

non-convex Arrow-Hurwicz-Uzawa type algorithm. To simplify

presentation, we focus on the general form of the finite-sum prob-

lem given in (36) in Appendix A, where we define x = (θ , λ). We

first make the following assumptions.

Assumptions A. We assume that

A1. For all i = 1, 2, · · · ,n, the functions дi are gradient Lipschitz
continuous, i.e., there exists constant Li > 0 such that

∥∇дi (x ) − ∇дi (y)∥ ≤ Li ∥x − y∥ ∀ x ,y ∈ dom (дi ).

A2. The function д is lower bounded.
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From Assumption A1 we conclude that the function д = 1

n
∑
i дi is

also gradient Lipschitz continuous with constant L > 0. Assumption

A holds when the functions дi are smooth and dom (дi ) is compact.

In our problem, this means that the iterates θr and λr are always
bounded, which is expected when a nonlinear function is properly

designed to approximate the value function, [7]. If this assumption

is violated, then the variables can grow unbounded which means

that the model is overfitting. In this case, finding the optimal θ and

λ becomes meaningless.

Problem (36) is a nonconvex optimization problem, therefore

we can define the ϵ-stationary solution as the point x∗ such that

E∥∇д(x∗)∥ ≤ ϵ . Consequently, we can define the stationarity gap

at iteration r as

Ψr
:= E∥∇д(xr )∥2. (23)

Moreover, define a potential function to characterize the behavior

of the algorithm as

Λr :=
1

n

n∑
i=1

дi (x
r ) +

n∑
i=1

4

piηin2



∇дi (y

r−1
i ) − ∇дi (x

r )



2

.

Also, we define the filtration F r
as the σ -field generated by

{it }
r−1
t=1 . Throughout this section the expectations are taken with

respect to ir conditioning on F
r
unless otherwise stated. In the first

lemma we show that under appropriate selection of the stepsize α ,
the potential function decreases as the algorithm proceeds.

Lemma 4.1. Suppose Assumptions A holds true, and set

pi =
ηi∑n
i=1 ηi

and α ≤
1

(
∑n
i=1
√
5Li )2

. (24)

Then, the following holds:

E[Λr − Λr−1] ≤ −
1

100α
E∥xr − xr−1∥2

−

n∑
i=1

1

ηin2



∇дi (x

r−1) − ∇дi (y
r−2
i )




2

. (25)

The Proof of Lemma 4.1 is shown in Appendix B. The next

theorem presents the main convergence results pertaining to the

proposed algorithm.

Theorem 4.2. Suppose Assumption A holds true and pick pi and
α as in (24). Then, we have

1. Every limit point of Algorithm 1 is a stationary solution of
problem (36) almost surely.

2. Algorithm 1 converges with a sublinear rate, i.e.,

Eu [Ψ
u
] ≤

200E[Λ1 − ΛT+1]

αT
,

where u is a uniformly random number from {1, 2, · · · ,T }.

Proof. First we prove the convergence. Using Assumption A2

we can verify that the potential function Λr is lower bounded for

every r ≥ 1. Therefore, there exists Λ such that Λr − Λ ≥ 0. From

Lemma 4.1 it is clear that Λr is diminishing. Therefore, {Λr − Λ}
is a nonnegative supermartingale. Applying the supermartingale

Convergence Theorem [6, Proposition 4.2] we conclude that {Λr }
converges almost surely. Further, we have that for all i almost surely




∇дi (x
r−1) − ∇дi (y

r−2
i )




2

→ 0, E∥xr − xr−1∥ → 0. (26)

Figure 1: 5 × 5 Simulation Environment. States
(4, 0), (0, 4), (4, 4) are labeled with A,B,T , respectively.
States (0, 0), (1, 2), (1, 3), (4, 2) are labeled with C. R represents
the current position of the robot.

Combining this result with the update equation (37) we conclude

that ∥∇д(xr )∥ → 0 almost surely.

Next we prove the second part of the theorem. We bound the

stationarity gap defined in (23) as follows:

Ψr = E∥∇д(xr )∥2

= E




1

n

n∑
i=1
∇дi (x

r ) −Gr +Gr 



2

≤ 2E∥Gr ∥2 + 2E




1

n

n∑
i=1
∇дi (x

r ) −Gr 



2

≤
2

α2
E∥xr+1 − xr ∥2

+

n∑
i=1

2α

ηin2



∇дi (x

r ) − ∇дi (y
r−1
i )




2

, (27)

where in the second inequality we utilize equations (37) and (39).

Combining equation (25) and (27) we obtain the following relation-

ship between the stationary gap and the potential function:

Ψr ≤
200

α
E[Λr − Λr+1]. (28)

Taking the sum over r = 1, · · · ,T and dividing both sides by T we

have

1

T

T∑
r=1

Ψr ≤
200E[Λ1 − ΛT+1]

αT
.

Since u is a uniform random number in {1, 2, · · · ,T } we have

Eu [Ψ
u
] ≤

200E[Λ1 − ΛT+1]

αT
(29)

which proves the second part of the theorem. □

5 NUMERICAL EXPERIMENTS
In this section, we illustrate the proposed algorithm on LTL plan-

ning problems for a single robot. Algorithm 1 was implemented in

Python 2.7, and the neural networks were defined using Tensor-

flow [1] and trained on the Amazon Web Services server using an

Nvidia Tesla K80 graphics card and a quad-core Intel Xeon CPU

E5-2686 2.30GHz. In what follows, we examine the performance

of Algorithm 1 in a 5 × 5 and a 10 × 10 discrete grid world, where

each discrete point is associated with a state of a labeled MDP that

models the robot; see Figure 1 and Figure 2. The set AP of atomic
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Figure 2: 10 × 10 Simulation Environment. States
(2, 7), (5, 2), (8, 8) are labeled with A,B,T , respectively.
States (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) are labeled with C. R
represents the current position of the robot.

propositions is defined as AP = {A,B,C,T ,∅}, where the atomic

propositions A,B,T are observed in the respective regions shown

in Figure 1 and Figure 2, while ∅ denotes that nothing is observed.

In both environments, the robot can take 4 actions: UP, RIGHT,
DOWN, LEFT. We assume the robot has a noisy controller, which

can only execute the desired actionwith probability of 0.7, and a ran-

dom action among the other available ones is taken with probability

of 0.3. The initial location of the robot is at (0, 1) in the 5 × 5 envi-

ronment and (4, 1) in the 10×10 environment, respectively. In what

follows, we consider two case studies. The first case study pertains

to the 5 × 5 environment and an LTL specification corresponding

to a DRA with 5 states. We compare our algorithm to a stochastic

gradient descent (SGD) method [22] and a Momentum-SGDmethod

[28] that are typically used in deep learning, the model-based al-

gorithm proposed in [30] and tabular Q-Learning approach [34]

The second case study pertains to the 10 × 10 environment and a

LTL specification corresponding to a DRA with 16 states. In this

case, we implement our algorithm in a online growing-batch [24]

fashion to address complexity of the larger state space. Note that in

both cases, AMEC-based methods, such as [12], cannot be applied

to design policies that maximize the probability of satisfying the

considered LTL formulas since AMECs do not exist.

The structure of the neural networks remains the same for both

case studies. Specifically, both networks have 2 hidden layers with

400 and 300 nodes, respectively, and a biased layer is associated with

each hidden layer. All the weights of the hidden layers are initialized

uniformly between 0 and 0.1 and the weights of the output layer

are initialized uniformly between 0 and 0.01. All the weights of

the bias layers are initialized at 0. The activation functions of the

hidden layers are selected to be hyperbolic tangent functions. A

batch normalization layer [17] is applied after each one of the two

hidden layers to adjust and scale the activation output. The reward

function parameters are selected as follows: rG = −1, rB = −10,
rd = −100, ro = −2.

5.1 Case Study I
In this case study, we assume that the robot must learn a policy to

satisfy the following LTL task:

ϕ1 = ♢(A ∧ ♢T ) ∧ □¬C (30)

in the 5 × 5 environment shown in Figure 1. In words, the LTL

task ϕ1 requires the robot to visit A first, then visit T while always

avoidingC . The DRA Rϕ1
corresponding to the LTL ϕ1 has 5 states,

Figure 3: Graphical depiction of the policy designed by Algo-
rithm 1 for the 5×5 environment considered in Case Study I.
Each subfigure shows the policy with respect to each rabin
state Q = {q0, . . . ,q4}. The arrows show the action, i.e., the
direction in which the robot should move, according to the
designed policy. The optimal trajectory following the opti-
mal policy is highlighted within red boundaries.

Figure 4: Case Study I: Comparison of the proposed reduced
variance model-free learning algorithm, the SGD model-
free learning algorithm, the Momentum-SGD model-free
learning algorithm, the tabular Q-Learning method and the
model-based learning algorithm in [30].

i.e., Q = {q0,q1,q2,q3,q4} and 33 edges, where the state q0 is the
deadlock state, the state q1 is the initial state and the state q4 is the
terminal/accepting state that needs to be visited infinitely often.

The robot needs to satisfy A ∧ ¬C , T ∧ ¬C and ¬C , to transition

from q1 to q2, q2 to q3 and q3 to q4, respectively.
The policy computed for this environment is shown in Figure

3. Specifically, Figure 3 shows the policy separately for each rabin

state q, since the robot is operating in the product MDP state-space

that collects states of the formm = (s,q); see Definition 2.9. Observe
that the policy learned by the robot in the rabin states q1,q2 and q3
eventually leads to the accepting states with the minimum number

of movements due to the design of the reward function (9). Figure

4 compares the proposed reduced variance model-free learning

algorithm to the SGDmethod [22] with TDmodel-free learning [34],

the Momentum-SGDmethod [28] with TDmodel-free learning [34],

tabular Q-Learning [34] and the model-based learning algorithm



Reduced Variance Deep Reinforcement Learning with Temporal Logic Specifications ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

proposed in [30]. It can be seen that the proposed Arrow-Hurwicz-

Uzawa type model free learning algorithm converges faster than

the other methods and achieves a better approximation of the state-

action value functions, as can be seen by the lower variance in the

reward.

5.2 Case study II
In this case study, the robot must learn a policy to satisfy the fol-

lowing LTL task:

ϕ2 = ♢(A ∧ ♢(B ∧ ♢T )) ∧ □♢A ∧ □♢B ∧ □¬C . (31)

in the 10 × 10 environment shown in Figure 2. In words, the LTL

task ϕ2 requires the robot to first visit A, then visit B and T , at
last travel between A and B infinitely often while always avoiding

C . The DRA Rϕ2
corresponding to the LTL ϕ2 has 16 states, i.e.,

Q = {q0,q1,q2,q3, . . . ,q15} and 241 edges, where the state q2 is the
deadlock state, the state q3 is the initial state, the state q1 is the
terminal/accepting state that needs to be visited infinitely often

and G = {q2,q3,q6,q8,q10,q11,q12} is the set of states that need to

be visited only finitely often. The robot needs to satisfy A ∧ ¬C ,
B ∧ ¬C , T ∧ ¬C , A ∧ ¬C , B ∧ ¬C , ¬C , A ∧ ¬C , B ∧ ¬C , A ∧ ¬C
and ¬C to transition from q3 to q6, q6 to q8 , q8 to q10, q10 to q11,
q11 to q12, q12 to q15, q15 to q14, q14 to q13, q13 to q1 and q1 to q14,
respectively. The rabin states not mentioned above do not have

any physical meaning in this particular simulation environment.

An accepting run of the corresponding rabin automaton Rϕ2
is

Tϕ2
= q3q6q8q10q11q12q15q14q13q1 (q14q13q1)

ω
.

Note that during the learning process, the agent typically inter-

acts with the environment and new data is collected at each time

step. To take full advantage of new data and improve the training

efficiency, we implement Algorithm 1 in an online fashion, using

the growing batch method described in [24]. The convergence and

convergence rate analysis of this online implementation of Algo-

rithm 1 is left for future research. To implement Algorithm 1 in

an online way, first we model En as a queue. Specifically, each

time new data is collected, we replace the gradient information of

the oldest data, ∇fold (θ , λ), with the new one, ∇fnew (θ , λ), in En .
Then, we update Gθ and Gλ in (19) as follows

Gr
θ =

1

n

n∑
i=1
∇θ fi ( ˜θ

r−1
i , ˜λr−1i ) +

1

n
[∇θ fnew (θr , λr ) (32)

− ∇θ fold ( ˜θ
r−1
old ,

˜λr−1old )]

Gr
λ =

1

n

n∑
i=1
∇λ fi ( ˜θ

r−1
i , ˜λr−1i ) +

1

n
[∇λ fnew (θr , λr ) (33)

− ∇λ fold ( ˜θ
r−1
old ,

˜λr−1old )].

The policy computed for this environment is shown in Figure 5.

Observed that according to the optimal learned policy, the robot

learns to keep some distance from regionC while traveling between

the states that need to be visited infinitely. As in Case Study I,

we also compare the proposed reduced variance TD model-free

learning algorithm, with the SGD method [22] with TD model-free

learning [34], the Momentum-SGD method [28] with TD model-

free learning [34], the tabular Q-Learning method [34] and the

model-based learning algorithm proposed in [30]. The results are

Figure 5: Graphical depiction of the policy designed by Algo-
rithm 1 for the 10×10 environment considered in Case Study
II. Each subfigure shows the policy with respect to the rabin
states that appear in Tϕ2

except for the accepting state q1,
Q = {q3,q6,q8,q10,q11,q12,q15,q14,q13}. The arrows show the
action, i.e., the direction in which the robot should move,
according to the designed policy. The optimal trajectory fol-
lowing the optimal policy is highlighted within red bound-
aries.

Figure 6: Case Study II: Comparison of the proposed reduced
variance model-free learning algorithm, the SGD model-
free learning algorithm, the Momentum-SGD model-free
learning algorithm, the tabular Q-Learning method and the
model-based learning algorithm in [30].

shown in Figure 6. It can be seen that our method converges faster

than the other methods and achieves a better approximation of the
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Figure 7: Comparison of the proposed reduced variance algo-
rithmwith the SGD algorithm in a policy evaluation setting.

state-action value functions, as can be seen by the lower variance

in the reward. A possible reason that the model-based approach

does not converge is that the data gathered during the exploration

stage is not sufficient to reconstruct the MDP accurately.

5.3 Policy Evaluation
In this section, we compare the error of evaluating the policy gen-

erated by Algorithm 1 and SGD for the example considered in Case

Study II. The error is defined as the mean square error between the

ground truth state values for all product states, V π (sp ) ∀sp ∈ Sp ,
calculated by dynamic programming [34] and the estimated state

values for all states, Ṽ π
Alд1

(sp ) and Ṽ
π
sдd (sp ) ∀sp ∈ Sp , using Algo-

rithm 1 and SGD. The ground truth value V π (sp ) is defined as the

expectation of the accumulated return over a finite horizon starting

from stage 0 and ending at stageT > 0 given a state sp and a policy

π , i.e.,

V π (sp ) = E[
T∑
i=0

γ iri+1 |sp ,π ], ∀sp ∈ Sp . (34)

and can be calculated using the following dynamic programming

update equation [34]

V π (sp ) ←
∑

a∈Ap

π (a |sp )
∑

s ′p ∈Sp

(
RP (sp ,a, s

′
p ) + γp (s

′
p |sp ,a)V

π (s ′p )
)
,

(35)

where p (s ′p |sp ,a) ∈ Pp are the transition probabilities, and γ is

the discounting factor. To calculate Ṽ π
Alд1

(sp ) and Ṽ
π
sдd (sp ) ∀sp ∈

Sp , we sample a fixed number of (sp ,a, r , s
′
p ) tuples by employing

policy π in the environment considered in Case Study II, where

sp , s
′
p ∈ Sp , a ∈ Ap , a ∼ π and r ∈ Rp . At last, [Algorithm 1, line

16-31] and the SGD method [22] are applied to calculate Ṽ π
Alд1

(sp )

and Ṽ π
sдd (sp ), ∀sp ∈ Sp . The results are shown in Figure 7 and it

shows that our algorithm converges faster and the training process

is more stable.

6 CONCLUSION
In this paper, we proposed a reduced variance model-free deep

reinforcement learning method to synthesize control policies for

mobile robots modeled by Markov Decision Process (MDP) with

unknown transition probabilities that satisfy Linear Temporal Logic

(LTL) specifications. Unlike SGD algorithms that are often used in

deep RL, our method can estimate the gradients of an unknown loss

function more accurately, improving the stability of the training

process. To the best of our knowledge, this is the first model-free

reduced variance deep reinforcement learning algorithm that can

solve LTL planning problems even if AMECs do not exist. Unlike

relevant works, our method does not require learning the tran-

sition probabilities in the MDP, constructing a product MDP, or

computing Accepting Maximal End Components (AMECs). This

significantly reduces the computational cost and also renders our

method applicable to planning problems where AMECs do not exist.

Simulation studies verified the convergence performance of the

proposed algorithm.
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A FINITE-SUM OPTIMIZATION
Consider the optimization problem:

min

x ∈Rd
д(x ) =

1

n

n∑
i=1

дi (x ), (36)

where дi : R
d → R is a smooth possibly nonconvex function. A

standard method for solving (36) is the gradient descent algorithm

which performs the update xr+1 = xr − αr 1

n
∑n
i=1 ∇дr (x

r ), where
αr is the stepsize. This method converges to the stationary solution

of the problem (36) when αr is chosen appropriately [4]. However,

when n is large the cost of evaluating the gradient is very expen-

sive. One approach to deal with this issue is using the stochastic

gradient descent (SGD) algorithm, in which the full gradient is

replaced with its unbiased estimation [5]. In particular, we sam-

ple ir from En , see Definition 2.8, and the update rule becomes

xr+1 = xr −αr∇дir (x
r ). This significantly reduces the cost of eval-

uating the gradient compared to the GD algorithm. However, the

variance of the estimation can be very high. To reduce the variance

of the estimation, a diminishing step size can be employed, which

however makes the algorithm very slow. To decrease the variance

and maintain a cheap iteration, reduced variance algorithms have

been proposed [9, 18, 31]. The key idea is to store the gradient

information as the algorithm proceeds and use this information to

reduce the variance of stochastic gradient approximation. In partic-

ular, in the SAGA algorithm [9] we sample ir uniformly randomly

from En , and define the intermediate variableyri := xr if i = ir , and

yri := yr−1i otherwise. Then, the algorithm performs the following

update:

xr+1 = xr − αGr , (37)

whereGr = 1

n
∑n
i=1 ∇дi (y

r−1
i ) + ∇дir (x

r ) − ∇дir (y
r−1
ir

), and α is a

constant stepsize. It can be proved thatGr
is an unbiased estimation

of the full gradient. Also, the variance ofGr
vanishes when r → ∞

[9, 31]. Notice that in standard form sampling in the SGD and SAGA

algorithms is uniform; however, it has been shown that in some

cases nonuniform sampling might improve the convergence rate.

See for example [16]. In particular, let pi denote the probability of

choosing the ith data. Then, in the nonuniform sampling SAGA

(NU-SAGA) the moving direction Gr
will be

Gr =
1

n

n∑
i=1
∇дi (y

r−1
i ) +

1

npir
[∇дir (x

r ) − ∇дir (y
r−1
ir )]. (38)

B PROOF OF LEMMA 4.1
Proof. First we bound the difference between the true gradient

and its unbiased estimation Gr
. We have that

E




1

n

n∑
i=1
∇дi (x

r ) −Gr 



2

=E




1

n

n∑
i=1
∇дi (x

r ) −
1

n
∇дi (y

r−1
i ) −

1

pir n
[∇дir (x

r ) + ∇дir (y
r−1
ir )]




2

≤

n∑
i=1

1

pin2



∇дi (x

r ) − ∇дi (y
r−1
i )




2

, (39)
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where in the last inequality we used the fact that E[∇дir (x
r ) −

∇дir (y
r−1
ir

)] =
∑n
i=1 pi [∇дi (x

r )−∇дi (y
r−1
i )] as well as the inequal-

ityE∥x−E[x]∥2 ≤ E∥x ∥2, which holds true for any random variable

x .
From the definition of the potential function Λr we have

E[Λr − Λr−1] = E
[
1

n

n∑
i=1

дi (x
r ) − дi (x

r−1)
]

+ E

[
4

n2

n∑
i=1

1

piηi




∇дi (x
r ) − ∇дi (y

r−1
i )




2

]

− E

[
4

n2

n∑
i=1

1

piηi




∇дi (x
r−1) − ∇дi (y

r−2
i )




2

]
. (40)

Now we bound equation (40) term by term. For the first term we

have

1

n

n∑
i=1

[дi (x
r ) − дi (x

r−1)] (41)

≤

〈
1

n

n∑
i=1
∇дi (x

r−1),xr − xr−1
〉
+

∑n
i=1 Li

2n
∥xr − xr−1∥2

=

〈
1

n

n∑
i=1
∇дi (x

r−1) +
1

α
(xr − xr−1),xr − xr−1

〉

−

(
1

α
−

∑n
i=1 Li

2n

)
∥xr − xr−1∥2

=

〈
1

n

n∑
i=1
∇дi (x

r−1) −Gr−1,xr − xr−1
〉

−

(
1

α
−

∑n
i=1 Li

2n

)
∥xr − xr−1∥2

≤
1

2τ









1

n

n∑
i=1
∇дi (x

r−1) −Gr−1








2

−

(
1

α
−

∑n
i=1 Li

2n
−
τ

2

)
∥xr − xr−1∥2, (42)

where in the first inequality we used the Lipschitz continuity of the

gradients of дi ’s, and in the last inequality we applied the following

identity which holds true for any vectora andb and for any constant
τ > 0: ⟨a,b⟩ ≤ 1

2τ ∥a∥
2 + τ

2
∥b∥2. Selecting τ = 1

2α and taking the

expectation on both sides of (41), we have

α

2

E








1

n

n∑
i=1
∇дi (x

r−1) −Gr−1








2

−

(
3

4α
−

∑n
i=1 Li

2n

)
E∥xr − xr−1∥2

≤

n∑
i=1

α

pin2



∇дi (x

r−1) − ∇дi (y
r−2
i )




2

−

(
3

4α
−

∑n
i=1 Li

2n

)
E∥xr − xr−1∥2.

(43)

where in the last inequality we used equation (39). Next we bound

the second term (40) as

E∥∇дi (x
r ) − ∇дi (y

r−1
i )∥2

= E∥∇дi (x
r ) + ∇дi (x

r−1) − ∇дi (x
r−1) − ∇дi (y

r−1
i )∥2

≤ (1 + τi )E∥∇дi (x
r ) − ∇дi (x

r−1)∥2

+

(
1 +

1

τi

)
E∥∇дi (y

r−1
i ) − ∇дi (x

r−1)∥2

= (1 + τi )E∥∇дi (x
r ) − ∇дi (x

r−1)∥2

+ (1 − pi )

(
1 +

1

τi

)
∥∇дi (y

r−2
i ) − ∇дi (x

r−1)∥2, (44)

where in the first inequality we used the following identity which

holds true for any vector a and b: ∥a + b∥2 ≤ (1 + τ )∥a∥2 + (1 +
1

τ )∥b∥
2, for every τ > 0. The last equality is true because for each

i there is a positive probability pi such that the ith data is picked.

Therefore, ∇дi (y
r−1
i ) − ∇дi (x

r−1) = 0, otherwise with probability

1 − pi we have ∇дi (y
r−1
i ) = ∇дi (y

r−2
i ).

Setting τi =
2

pi , overall the second and third term of (40) can be

bounded as

+ E

[
4

n2

n∑
i=1

1

piηi




∇дi (x
r ) − ∇дi (y

r−1
i )




2

]

− E

[
4

n2

n∑
i=1

1

piηi




∇дi (x
r−1) − ∇дi (y

r−2
i )




2

]

≤

n∑
i=1

4L2i (2 + pi )

p2i ηin
2

E∥xr − xr−1∥2

−
2pi (1 − pi )

ηin2



∇дi (y

r−2
i ) − ∇дi (x

r−1)



2

. (45)

Combining (43) and (45), and using the relationship of
1

α =
∑n
i=1 ηi

we have

E[Λr − Λr−1]

≤

n∑
i=1

(
α

pin2
−
2pi (1 − pi )

ηin2

)



∇дi (x

r−1) − ∇дi (y
r−2
i )




2

+

n∑
i=1

(
−3ηi
4

+
Li
2n
+
4L2i (2 + pi )

p2i ηin
2

)
E∥xr − xr−1∥2. (46)

Now we look at the constants on the right-hand-side in (46). Setting

pi =
ηi∑n
i=1 ηi

, we obtain that

α

pin2
−
2pi (1 − pi )

ηin2
≤ −

1

ηin2
.

Also, selecting ηi ≥
5Li
npi we get

−3ηi
4
+

Li
2n +

4L2i (2+pi )
p2i ηin

2
≤

ηi
100

. Sub-

stituting pi =
ηi∑n
i=1 ηi

in this equation we have ηi ≥
√
Li

∑n
i=1 ηi .

Summing over i and simplifying the results we obtain

∑n
i=1 ηi ≥

(
∑n
i=1
√
5Li )

2
, which completes the proof. □
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