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1 Introduction

Societal tradeoff rules can effectively help us to optimize the allocation of
resources especially when subjective factors need to be taken into account.
In other words, it allows people to vote a value on different activities and
generate a general consensus which most of the people will agree with. When
aggregating the numbers, we could simply choose the median value of each
activities, which is known as the Median Rule. This rule has been proved
strategy-proof, however, as Conitzer, Brill and Freeman (2015)1 observed, the
aggregate result would not be consistent if multiple values need to be eval-
uated. Then a Distance Based Rule model has been developed by Conitzer,
Freeman et al. (2016)2 and can output consistent results. An additive model
has been defined based on this rule. It will ask people to vote a value on
each pair of activities, and the value represents how much units an activity
is preferred to another based on a person’s own evaluation. Then the model
will output the aggregate value of each pair of activities through maximum
likelihood estimation of the “true” tradeoff vector, or in other words, mini-
mizing the distance between the “true” tradeoff and the aggregate tradeoff
generated from the model.

However, in real situation, it is hard to obtain a “true” voting distribution
which we can test our result with. And according to Conitzer’s2 previous
work, additive model could have large penalties if the input have a large
number of activities and voters. So it is important to figure out a way to
check the reliability of the results from additive model. Kemeny Rule had
been proved accurate in the limit and could estimate the “true” ranking of
activities with a high accuracy and with small number of input samples. In
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this project, I will compare the output from additive model with the output
from Kemeny Rule to evaluate the reliability of additive model when the
“true” distribution is unknown and analyze the sample complexity when the
results from additive model consistent with results from Kemeny Rule.

2 Model Description

2.1 Preliminaries

Let N = {1, 2, ..., n} be a finite set of voters. Let A = {a, b, c, d...} be
a set of m activities. Let qi(a) denotes the value voted on activity a by
person i and L(A) be the set of votes voted by person i, where Li(A) =
{qi(a), qi(b), qi(c)...}. Define function fi sorts all the elements in Li(A) in
a decreasing order, where fi : A → {1, 2, 3, 4, ...,m}. Specifically, fi(a)
is the position of activity a in the set A, for example, fi(a) = 1 means
qi(a) = maxLi(A) and fi(a) = m means qi(a) = minLi(A), where i ∈ N
and a ∈ A.

Then we could use a weighted directed graph Gi to represent the rela-
tionship between different activities voted by person i. For all i ∈ N , in
each graph Gi, let all the activities in A be the vertices and there is an edge
between each pair of activities (a, b) and a → b if and only if qi(a) > qi(b).
In addition, because we prefer Gi to be a complete graph, we expect that for
all the voters, qi(a) = qi(b) will not happens for any pairs of activities. So
we would require voters to vote a slightly different value to a and b if they
think a is closely as the same important as b. Let tabi be the weight of edge
(a, b), where tabi = qi(a)−qi(b). Let set Ei represents all the edges in graph Gi.

For example, if a CEO let three senior managers to vote on three divisions
that a company should focus on in the next year. And the three divisions
are marketing, manufacturing and sales. So in this case, N = {1, 2, 3},
A = {a, b, c} and a = marketing, b = manufacturing, c = sales. If manager 1
value a as 15 units, b as 10 units and c as 5 units, then q1(a) = 15, q1(b) = 10
and q1(c) = 5 and the graph is shown as Figure 1.
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Figure 1: Weighted directed graph shows the tradeoffs

2.2 Noise Model

Differ from the way Conitzer et al.2 defining additive model, where the
tradeoff values between pairs of activities, or the value of tabi s, are drawn
from a “true” distribution Ptrue. In our model, for all i ∈ N , the quality of
activity a, qi(a), voted by person i is drawn i.i.d. from a normal distribu-
tion N (µa, σ), where µa represents the true quality of activity a. However,
the tradeoff values between pairs of activities (a, b) based on person i’s vote
obey a normal distribution N (µa − µb, σ) which could be used to define an
additive model. After all the quantities has been determined, we could sort
the elements in Li(A) in a decreasing order to obtain fi. So our model could
be simply transferred into additive model by calculating the tabi s. And the
optimal qualities of activities can be solved by linear programming in poly-
nomial time. In addition, function fis could sort the optimal qualities into
a ranking and enable us to evaluate the consistency between additive model
and Kemeny rule.

In our model, the probability of drawing a tradeoff value specific tabi is
proportional to e−d(t

ab,tabi )2 , where d(tab, tabi ) = tabi − µab, tabi = qi(a) − qi(b)
and µab = µa − µb.

We could also sort all the qi(a), qi(b), qi(c), · · · ∈ Li(A) in a decreasing
order and obtain a ranking fi. So there is a bijection between fi and Li(A)
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and the probability of drawing a ranking f given that the true order is f ∗ is:

Pr[f |f ∗] =
e−d(t,ti)

2

Zm

where d(t, ti) =
∑

(a,b)∈Ei
d(tab, tabi ).

Proposition 1. The MLE estimator of the true ranking is argmin
∑n

i=1 d(t, ti),
where d(t, ti) =

∑
(a,b)∈Ei

d(tab, tabi ).

Proof.

max
∏
i

∏
ab

e−(t
ab
i −µab)2

⇐⇒ max
∑
i

∑
ab

−(tabi − µab)2

⇐⇒ min
∑
i

∑
ab

|tabi − µab|

⇐⇒ min
∑
i

d(t, ti)

3 Additive Model & Kemeny Rule

3.1 Kemeny Rule

Definition 1. Kemeny Rule. Given a ranking profile voted by n person
f1, f2, . . . , fn, Kemeny Rule will select a ranking f ∈ L(A) that minimizes∑n

i=1 dKT (f, fi), where dKT (f, fi), the Kendall tau (KT ) distance, could be
defined as:

dKT (f1, f2) = |{(a, b)|((a �f1 b) ∧ (b �f2 a)) ∨ (a �f2 b) ∧ (b �f1 a)}|

Generally, the KT distance denotes the number of pairs of activities whose
relative position in two votes are not consistent. I. Caragiannis, A. Procaccia
and N. Shah3 had already proved that Kemeny rule is accurate in the limit if
the noise model is d-monotonic, which means that the output from Kemeny
rule based on our noise model would return the correct ranking given an
infinite number of samples. More detailed proof could be found in section
3.3.
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3.2 Additive Model

The linear program introduced by Conitzer2 in additive model could be
slightly modified to fit our model. It contains variables q(a), q(b) and tabi ,
where q(a) and q(b) denotes the optimal quality for each activity, so tab =
q(a) − q(b), and dabi denotes the distance |tabi − tab|. The linear program is
shown as follows:

minimize
∑
i∈N

∑
(a,b)∈Ei

dabi

subject to dabi > q(a)− q(b)− tabi (∀i, a, b)
dabi 6 q(a)− q(b)− tabi (∀i, a, b)

3.3 Accurate in the Limit

Definition 2. Pairwise-Majority Consistent (PM-c) Rules. If graph
Gi is complete and acyclic, then we could say the rule used to define Gi is
pairwise-majority consistent.

Proposition 2. Kemeny rule based on the model defined in section 2 is
pairwise-majority consistent.

Proof. According to the definition, there is always an edge between each
pair of activities. So the graph of additive model should be complete. Now
prove the graph is acyclic by contradiction: Assume there exist a circle in
graph Gi, say the path is a → b → c → d → a. But according to the
definition of Gi, a → b exists if and only if qi(a) > qi(b) so apparently
qi(a) > qi(b) > qi(c) > qi(d) > qi(a) cannot happens. Consequently, path
a→ b→ c→ d→ a should not exist in graph Gi.

Definition 3. d-Monotonic Noise Models. Let f ∗ denote the “true”
ranking. A noise model is called d-monotonic with respect to distance d if
for any f, f ′ ∈ L(A), d(f, f ∗) < d(f ′, f ∗) implies Pr[f |f ∗] > Pr[f ′|f ∗] and
d(f, f ∗) = d(f ′, f ∗) implies Pr[f |f ∗] = Pr[f ′|f ∗].

Proposition 3. The noise model defined in section 2 is d-monotonic
noise model.
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Proof. According to the definition in section 2.2:

Pr[f |f ∗] =
e−d(f,f

∗)2

Zm

Pr[f ′|f ∗] =
e−d(f

′,f∗)2

Zm

Then apparently:

d(f, f ∗) < d(f ′, f ∗) ⇐⇒ Pr[f |f ∗] > Pr[f ′|f ∗]

and

d(f, f ∗) = d(f ′, f ∗) ⇐⇒ Pr[f |f ∗] = Pr[f ′|f ∗]

Definition 4. Accurate in the limit. If a voting rule could return the
correct ranking given an infinite number of samples, then we say this rule is
accurate in the limit.

Lemma 1. All the PM-c rules are accurate in the limit with respect to
any noise model that is d-monotonic with respect to a distance function d.

Proof. Proved by Caragiannis et al.3

Proposition 4. Kemeny rule is accurate in the limit based on the noise
model defined in section 2.

Proof. According to Proposition 2, Proposition 3 and Lemma 1, our noise
model is d-monotonic and Kemeny rule is PM-c based on our noise model.
Then if the input quality values generated from the model defined in section
2, the output from Kemeny rule is accurate in the limit.

Based on Proposition 4, we could conclude that the output from Ke-
meny rule could represent the true ranking with a high accuracy, under the
condition that the true distribution remains unknown. In the following ex-
periment section (section 5), the output from Kemeny rule and from additive
model will be compared with the true ranking. And the result shows that
we could evaluate the accuracy of the ranking calculated by additive model
by assuming that the true ranking is the output from Kemeny rule.
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4 Sample Complexity

Propositon 5. For any given ε > 0, Kemeny rule could determine the
true ranking with probability at least 1 − ε given O(ln(m/ε)) samples from
the noise model defined in section 2.

Proof. We need to prove that

Pr[∀a, b ∈ A, a �f∗ b =⇒ nab − nba > 1] > 1− ε

where a �f b means that in ranking f , activity a is more important than b
(f(a) < f(b)). nab denotes the number of rankings f such that a �f b.

By using Hoeffding’s inequality and the union bound, Caragiannis3 al-
ready proved that

Pr[∃a, b ∈ A, {(a �f∗)b ∧ (nab − nba 6 0)}] 6 m2 · e2·δ2min·n

where δab = pa�b − pb�a and pa�b denotes that the probability of a � b in a
random ranking f .

Now we only need to prove that δmin = Ω(1). The detailed proof will be
shown in Appendix.

5 Experiment

Because of proposition 4 and proposition 5, when the true distribution is
remained unknown, we could evaluate the accuracy of the optimal solution
from additive model by assuming the underlying true ranking is the output
from Kemeny rule. And the difference between these two output could be
used to evaluate the additive model.

The following experiment, shown in Figure 2, drawn a true quality from
a normal distribution N (µa, σ) for each activity a and shows the difference
between the output from additive model and Kemeny rule, the difference
between the output from additive model and true values and the difference
between the output from Kemeny rule and true values. The difference is
estimated by Footrule Distance, which is defined as follows:

dFR(f1, f2) =
∑
a∈A

|f1(a)− f2(a)|

7



Figure 2: Experiment

The number of activities is 10 in this experiment and the distance is
evaluated at the sample size (number of voters) of 10, 25, 50, 100, 200 and
500. So the maximum of dFR(f1, f2) could attain is 52, when f1 and f2 has
completely reverse order. Therefore, the yellow line clearly shows the high
accuracy of Kemeny rule and the blue line and red line shows the difference
between additive & true could be well represented by the difference between
additive & Kemeny.

6 Conclusion

This project build a bridge to connect Kemeny rule and additive method.
And it enables us to evaluate the accuracy of the results from additive model
without using the true distribution. Additive model has the advantage of
optimizing the qualities quantitatively and Kemeny rule has the advantage
of high accuracy. The model defined in this project combines these two rules,
as well as the advantages, together. So we can not only obtain specific values
on qualities of activities, not just a ranking from Kemeny rule, but also obtain
the optimal tradeoff with a high accuracy.
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8 Appendix

Proof of δmin = Ω(1):

δab = pa�b − pb�a
=

∑
f∈L(A)|a�f b

Pr[f |f ∗]−
∑

f∈L(A)|b�fa

Pr[f |f ∗]

=
∑

f∈L(A)|a�f b

(Pr[f |f ∗]− Pr[fa↔b|f ∗])

=
∑

f∈L(A)|a�f b

e−d
2(t,t∗) − e−d2(ta↔b,t

∗)

Zm

>
∑

f∈L(A)|a�f b

e−d
2(t,t∗) − e−d2(t,t∗)+k

Zm

=
∑

f∈L(A)|a�f b

e−d
2(t,t∗)(1− ek)

Zm

= (1− ek)pa�b

= (1− ek)
(

1 + δab
2

)
where fa↔b means that in ranking f , the position of a and b has been swapped.
The fourth transition follows d(ta↔b, t

∗) > d(t, t∗) + k for any k > 0.

So we could obtain

δab > (1− ek)
(

1 + δab
2

)

δab >
1− ek

1 + ek

which apparently shows δmin = Ω(1).
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